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Abstract—In this work, we address the problem of pose

detection and tracking of multiple individuals for the study

of behaviour in insects and animals. Using a Deep Neural

Network architecture, precise detection and association of the

body parts can be performed. The models are learned based

on user-annotated training videos, which gives flexibility to the

approach. This is illustrated on two different animals: honeybees

and mice, where very good performance in part recognition

and association are observed despite the presence of multiple

interacting individuals.

I. INTRODUCTION

Automatic pose estimation of insects and animals in video
is of great interest for behavioural science [1]. High precision
in detection and tracking of parts of animals is crucial for
quantitative measurement of social interactions of multiple
individuals. The ability to measure detailed interactions and
the performance of specialized tasks provides a confident
baseline that contributes to the understanding of behaviour
when more than one individual is present [2].

Recent developments in machine vision and machine learn-
ing have successfully approached human real-time pose es-
timation [3] by providing algorithms that perform precise
limb detection and correct association between them, even
in complex scenes containing multiple interacting persons.
Given the similarity of the tasks, this makes it suitable for
application in the study of behaviour of animals, especially
when complex settings, such as open field conditions or close
interaction between multiple animals are considered.

In this work, we present an adaptation of the Part Affinity
Fields approach [3] for detection and tracking of insect and
mammal body parts. Results on honeybees and mice show
that this tracking-by-detection approach produces high-quality
results in presence of multiple individuals and is a promising
approach to obtain precise estimates of pose for behavioral
studies.

II. RELATED WORK

Traditional techniques for behavioral study have been fo-
cused on using the pose extracted from generic image pro-
cessing approaches, such as ellipse-based detectors. In these
approaches, the body, detected by background subtraction, is
fitted with an ellipse that is then tracked over time [4].

Cascaded Pose Regression [5] was applied to track mice
and fish. This method relies on an initial estimate that is
refined progressively using a sequence of regressors.

More recently, deep neural network architectures have
shown to provide good performance for the tracking of
constrained honeybee body parts, learning the mapping from
the global structure and local appearance. [6]. In addition to
detection and tracking, identification of large amount of indi-
viduals using convolutional neuronal networks was proposed
in [7].

The Part Affinity Fields approach [3] introduced a neural
network architecture to learn both how to detect the body parts
and how to associate them into a complete body skeleton. A
convolutional network simultaneously predicts a set of 2D
confidence maps S of body parts present and a set of 2D
vector fields L of part affinity fields (PAFs), which encode
the association between the parts. A multi-stage architecture
is used to refine both fields and enforce consistency between
them. Greedy inference is used to select the most likely
predictions for the parts and use them as candidates for the
PAFs to associate them. This approach is based on a tracking
by detection approach, where no assumption is made on the
number or the location of the individuals during the detection
phase.

III. PART AFFINITY FIELDS ADAPTATION

The work of [3] focused on human pose estimation. We now
discuss how this approach can be applied to animal pose.

A. Detection and Association fields

We will use the same notation as [3] and denote by S =
(S1, S2, ..., Sj) the set of J confidence maps, one per body
part. The PAFs L = (L1,L2, ...,LC) encode C vector fields,
one per connection.

To accommodate animals with different numbers of body
parts, our implementation includes a flexible configuration that
allows the user to define custom skeletons and custom number
of parts. The ability to adapt the architecture according to the
number of parts improves the training time when only a few
parts are needed.



For honeybees, we considered five parts including ab-
domen, thorax, head and the two antennae. For mice, we
currently consider two parts tail and head as the flexibility of
the bodies and hair and the lack of precise visual landmarks
makes it harder to define other reference points. Adding
additional body parts in this context is the subject of ongoing
work.

B. Inference Stage

Given that honeybees may present poses on multiple direc-
tions, including upside down, and that it is common for two or
more individuals to be aligned, we used the distribution of the
distance between points to constrain the connections based on
the scale of the honeybees’ bodies. Thus, PAFs of different
bodies that were aligned can be recognized as separate bodies.
For example, Figure 1 shows the type of issues presented
before this extra step in the inference stage was taken.

Fig. 1. Incorrect association obtained when ignoring factor ⇡j1j2 when two
bodies that are aligned.

The original approach measured the association between
two parts by computing the line integral over the correspond-
ing PAFs or, in other words, by measuring the alignment of
the body parts detected. For instance, considering two body
parts dj1 and dj2 that they are candidates for the association,
the confidence of such election is expressed as:
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where p(u) interpolates the position of the two body parts
dj1 , dj2 , p(u) = (1 � u)dj1 + udj2 . The probability ⇡j1j2 is
defined as the empirical probability that dj1 connects with dj2
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, and is evaluated on the training

data. This factor is important in scenarios where PAFs can be
aligned, since all individuals share the same PAF channels in
the network.

This particular assumption works well for honeybees, as
their body is usually quite rigid, so the variance between
the distances of each of the body parts is small. However,
for mice body part detection, we did not include this score,
as the flexibility of their bodies introduces high variability
in the distance between nose and tail, which may affect the
correct detection when nose is close to the tail. Instead, we
did use the information of a fixed number of individuals to
reduce the expression of false positives or wrong connections.
This number was used as follows: if too many individuals

were detected after the inference, the incomplete skeletons
were removed and only the one that matched with past
detection were kept; if not enough individuals were detected,
the detection threshold was lowered.

IV. TRACKING

A. Temporal matching

For tracking, we rely on the precision of the detection on
consecutive frames and the Hungarian algorithm [8]. First we
create a N ⇥T matrix M, where N is the maximum possible
observed bees at a time, and T = (t1, ...tm) are the frames in
chronological order. An unique id is assigned to each visible
bee at t1, incrementally from 0 up to the number of bees
found. Finally, the matrix was filled such that Mij contains
the track id of the ith detection in frame tj .

The distance metric used for the Hungarian algorithm in
the case of honeybees takes into account not only point to
point distance to thorax, but also the distance to antennae
and to the head. Using the correspondences for all parts
reduced incorrect matches due to closeness between several
individuals. Missing parts were assigned a fixed penalty of
100 pixels.

B. Behaviour Classification

In the case of honeybees, the quality of detection for the
frame-to-frame tracking enabled us to define a preliminary
rule based classification of foraging behavior using the starting
and ending points of the tracks, as illustrated in Figure 2.
Trajectories ending at the bottom correspond to leaving bees;
those ending at the top correspond to entering bees; and bees
that stay a long period of time in a fixed position, usually are
cooling the colony using their wings (fanning behavior).

Fig. 2. Detection, tracking and behaviour classification. E indicates ”enter-
ing,” L ”leaving,” and F ”fanning.”

V. EXPERIMENTAL RESULTS

A. General considerations

We based our part affinity field implementation on a Keras-
TensorFlow open source project1. Specific changes were made
to the architecture definition and the inference part, as was
explained in Section I. Our practical customizations include

1https://github.com/michalfaber/keras Realtime Multi-Person Pose
Estimation

https://github.com/michalfaber/keras_Realtime_Multi-Person_Pose_Estimation
https://github.com/michalfaber/keras_Realtime_Multi-Person_Pose_Estimation


Fig. 3. Skeleton detected for Mice and Honey bee frames.

a flexible structure definition that allows us to use a smaller
network when only detecting five parts or fewer are being
detected. In the cited implementation, a fixed 19 channels
for parts and 38 for PAFs is used, making it too slow when
predicting for smaller conditions.

For the videos of mice and honeybee the camera was
always in fixed position. The annotation of the video datasets
consisted of labeling every individual animal in a selected
frame according to the number of parts selected. It was
assured there was a difference of at least two seconds between
each of the samples training datasets to enrich the diversity
of poses.

The annotation followed the Coco dataset’s format [9],
which consisted of labeling every fully visible bee or mouse
in the frame with the desired body parts. For honeybees
body parts were: Tip of the Abdomen, Head, Thorax, Left
Antenna and Right Antenna and for mice: Nose and Tail. Each
individual represents one separate annotation, and each body
part is a tuple (x, y, v) where x, y represent the Cartesian
coordinates and v the visibility (0: absent, 1: visible and
present, 2: present but not visible). Once these datasets were
obtained, a split with training ratio of 2/3 was used.

The dataset was augmented by a factor of 82 using linear
transformations, such as translations, rotations, and scaling.
All the experiments were performed using a Nvidia Titan X
GPU card.

Examples of detection are shown in Figure 3.

B. Results on honeybee videos

1) Dataset: The video capture system is designed to ob-
serve the ramp through which all foraging bees must pass to
exit or enter the colony. We used a 4 Mpixels GESS IP camera
connected to a networked video recorder configured at 8Mbps
for continuous recording. A transparent acrylic plastic cover
located on top of the ramp ensures the bees remain in the
focal plane of the camera. To avoid interfering with the bee’s
biological cycles, only natural light is used. A white plastic
diffuses the natural light received, and a black mask is put
around the camera to reduce the direct reflections that could
be visible on the ramp cover.

The videos were acquired in June 2017 at the UPR Agri-
cultural Experimental Station of Gurabo, Puerto Rico. Dataset
consists of 100 fully annotated frames, where each frame
contains from 6 to 14 individuals.

For honeybees, we considered training on five, three, and
two parts. Given that in some frames incomplete bees were

not labeled, we used a mask to avoid counting their detection
as incorrect.

2) Effect of the number of parts: We evaluated the perfor-
mance of the algorithm using mean Average Precision (mAP)
as provided by pose evaluation package 2 which is based
on [10]. First, multiple body pose predictions are greedily
assigned to the ground truth (GT) based on the highest PCKh
[11]. Since our scale is unique, we only use the distance
between thorax and head for PCKh-0.5. Table I shows results
for the best models for two, three and five parts and Average
Precision for each of the parts.

To analyze the performance in terms of the parts considered,
we trained the model up to 5000 epochs; every 20 epochs we
evaluated and saved the information related to detection of
the head and tail. The following figure represents the results
obtained from epoch 1000 up to 5000. Showing of each case
the min,25% percentile, median, 75% percentile and max.

Fig. 4. Box plot results after 1000 epochs of training.

The box plot shown in Figure 4 shows that in terms of
detection accuracy, higher scores are obtained on average
when using five parts for training. We hypothesize that the
higher number of parts may help the network interpolate
poorly detected parts by using the detection of its connected
parts.

TABLE I
BODY PART DETECTION PERFORMANCE (AP).

2 parts AP 3 partsAP 5 parts AP
Head 98.7% 96.4% 98.1%
Tip abdomen 94.0% 96.2% 95.0%
Thorax – 95.0% 98.7%
Right Antenna – – 94.4%
Left Antenna – – 90.4%
mAP 95.57 96.39 96.4

C. Results on mice videos

1) Dataset: The mouse recordings were made in Febru-
ary 2016 at the Howard Hughes Medical Institute’s Janelia
Research Campus, in accordance with approved IACUC pro-
tocols. The dataset is composed of 450 frames that always
contain two individuals.

2https://github.com/leonid-pishchulin/poseval.git

https://github.com/leonid-pishchulin/poseval.git


2) Detection performance: We considered two parts: nose
and tail. For training, 5000 epochs were used, reaching 93.0%
mAP in the validation dataset. Since the interaction of mice
may involve occlusion, complicated poses that involves curved
bodies or close interactions, there is ambiguity in the matching
that the PAFs cannot solve, since they are based on the
assumption of straight connections. Moreover, when noses
are touching, the two noses may generate a single detection
from the part confidence map. Future work will evaluate the
possibility of training additional intermediate body parts to
alleviate these issues.

Fig. 5. Issues related with closeness and occlusion.

3) Comparison to CPR: Despite the limitations discussed
previously, the proposed approach compared favorably to the
Cascaded Pose Regression approach (CPR) [5] on the same
challenging data. We took a short video clip with 300 frames
and applied both CPR and the proposed approach. Later, an
evaluator was presented with both results for each frame and
asked to decide which detector did better on each of the frames
or if they performed similarly. The criterion the evaluator used
to perform evaluation, was to select the model that predicted
the position of the body part closer to the real location in the
video. In case both detected the evaluator would count them
as similar performance.

These results show that out of 300 frames, Part Affinity
Fields performed better in 237 frames; in 54 of them both de-
tectors performed similarly; in 4 the CPR detector performed
better; and in 6 cases, both failed in at least one nose. Figure 6
shows some examples for each case.

Both correct
18%

OP better
79%

CPR better
1%

Both incorrect
2%

Fig. 6. Illustration of the comparison of (Upper row) Part Affinity Fields
detection vs. (Bottom row) CPR detection.

VI. CONCLUSION

The detection of pose performed by the proposed approach
offers a flexible framework that has demonstrated good per-

formance on two different types of animal models. We have
shown that the quality of the estimates for honeybees reached
high accuracy and that the method outperformed a state-of-
the-art tracking approach for mice.

It should be noted that the detection is performed on
each frame independently. It is therefore expected that it
can be improved by combining it with higher-level tracking
algorithms that incorporate knowledge about the dynamics of
the animals.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grants No. 1633164 and 1633184. I. F.
Rodriguez acknowledges support from the Janelia Visitor Program. T.
Giray acknowledges support from Puerto Rico Science and Technol-
ogy Trust (PRSTRT ; 2016-00161, 2017-00164). The authors would
like to thank Stephanie Feliciano and Janpierre Aleman who helped
with the acquisition at the UPR Agricultural Station of Gurabo of the
honeybee videos and Jeffrey Chan who helped with the annotation
of the videos.

REFERENCES

[1] U. Stern, R. He, and C.-H. Yang, “Analyzing animal behavior via
classifying each video frame using convolutional neural networks,”
Scientific Reports, vol. 5, pp. 14 351 EP –, 09 2015. [Online].
Available: http://dx.doi.org/10.1038/srep14351

[2] A. A. Robie, K. M. Seagraves, S. E. R. Egnor, and K. Branson,
“Machine vision methods for analyzing social interactions,” Journal
of Experimental Biology, vol. 220, no. 1, pp. 25–34, 2017. [Online].
Available: http://jeb.biologists.org/content/220/1/25

[3] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh, “Realtime multi-person 2d
pose estimation using part affinity fields,” in CVPR, 2017.

[4] S. R. Egnor and K. Branson, “Computational analysis of behavior,”
Annual Review of Neuroscience, vol. 39, no. 1, pp. 217–236,
2016, pMID: 27090952. [Online]. Available: https://doi.org/10.1146/
annurev-neuro-070815-013845

[5] P. Dollr, P. Welinder, and P. Perona, “Cascaded pose regression,” in 2010
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, June 2010, pp. 1078–1085.

[6] L. Duan, M. Shen, W. Gao, S. Cui, and O. Deussen, “Bee Pose Estima-
tion From From Single Images With Convolutional Neural Network,” in
IEEE International Conference on Image Processing (ICIP), Sep. 2017.

[7] B. M. H. R. H. F. d. P. Romero-Ferrero, F., “idtracker.ai: Tracking
all individuals in large collectives of unmarked animals (submitted),”
2018. [Online]. Available: https://arxiv.org/abs/1803.04351.

[8] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, no. 1-2, pp. 83–97, 1955.
[Online]. Available: http://dx.doi.org/10.1002/nav.3800020109

[9] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: Common objects in
context,” in European Conference on Computer Vision, ECCV 2014,
Zurich, 2014.

[10] E. Insafutdinov, M. Andriluka, L. Pishchulin, S. Tang, E. Levinkov,
B. Andres, and B. Schiele, “Arttrack: Articulated multi-person
tracking in the wild,” in 2017 IEEE Conference on Computer
Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA,
July 21-26, 2017, 2017, pp. 1293–1301. [Online]. Available:
https://doi.org/10.1109/CVPR.2017.142

[11] M. Andriluka, L. Pishchulin, P. Gehler, and B. Schiele, “2d human
pose estimation: New benchmark and state of the art analysis,” in IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June
2014.

http://dx.doi.org/10.1038/srep14351
http://jeb.biologists.org/content/220/1/25
https://doi.org/10.1146/annurev-neuro-070815-013845
https://doi.org/10.1146/annurev-neuro-070815-013845
https://arxiv.org/abs/1803.04351.
http://dx.doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/CVPR.2017.142

	Introduction
	Related work
	Part Affinity Fields Adaptation
	Detection and Association fields
	Inference Stage

	Tracking
	Temporal matching
	Behaviour Classification

	Experimental results
	General considerations
	Results on honeybee videos
	Dataset
	Effect of the number of parts

	Results on mice videos
	Dataset
	Detection performance
	Comparison to CPR


	Conclusion
	References

